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We find exact expressions for the end-to-end distance vector distribution function with fixed end orientations
for the wormlike chain model. This function in Fourier-Laplace space adopts the form of infinite continued
fractions, which emerges upon exploiting the hierarchical structure of the moment-based expansion. Our results
are used to calculate the root-mean-square end displacement in a given direction for a chain with both end
orientations fixed. We find that the crossover from rigid to flexible chains is marked by the root-mean-square
end displacement slowly losing its angular dependence as the coupling between chain conformation and end
orientation wanes. However, the coupling remains strong even for relatively flexible chains, suggesting that the
end orientation strongly influences chain conformation for chains that are several persistence lengths long. We
then show the behavior of the distribution function by a density plot of the probability as a function of the
end-to-end distance vector for a wormlike chain in two dimensions with one end pointed in a fixed direction
and the other end free �in its orientation�. As we progress from high to low rigidity, the distribution function
shifts from being peaked at a location near the full contour length of the chain in the forward direction,
corresponding to a straight configuration, to being peaked near zero end separation, as in the Gaussian limit.
The function exhibits double peaks in the crossover between these limiting behaviors.
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I. INTRODUCTION

The wormlike chain model describes a polymer molecule
that resists bending deformation embedded in a thermal en-
vironment �1�, which is the simplest model for a semiflexible
polymer. This model acts as a fundamental tool for address-
ing the effects of semiflexibility in a variety of instances
including polymer liquid crystals �2–4�, polyelectrolytes
�5,6�, protein networks �7,8�, and the response of individual
DNA molecules to tension �9�.

A key descriptor of the statistical behavior of a polymer
chain is the end-to-end distance distribution function. While
the end-to-end distance distribution function for a flexible
polymer is well known to be Gaussian, an exact solution for
the corresponding distribution function for the wormlike
chain is not as trivially found. Since the introduction of the
wormlike chain model �1�, many studies have addressed the
statistical behavior of a semiflexible polymer as defined by
this model and its several variants; these studies provide
deep insight into the behavior of individual chains and a
range of collective effects.

In the flexible limit, the chain statistics tend to a Gaussian
distribution function; corrections to this limiting behavior for
finite rigidity capture the first moments up to order lp /L,
where lp is the persistence length and L is the total chain
length �10,11�. Chain statistics in the rigid-rod limit are ob-
tained using the path integral formalism in the WKB ap-
proximation including fixed end orientations �12� and by
analytically evaluating the partition function by summing
over transverse fluctuations about a nearly straight chain
�13�. Furthermore, the limiting behavior of the chain statis-
tics for a rigid chain are found by performing the mathemati-
cal manipulations in Laplace space �Laplace transform of the
chain length� �14�. The chain statistics over the entire spec-
trum of chain rigidities is approximated by a fitting function
that is found using variational methods that match the first

several moments �15�. The statistical behavior of the worm-
like chain model including twist, bending discrepancies, and
natural helicity is numerically found through a harmonic
analysis on the rotation group �16�.

The wormlike chain model when defined as a continuous
space curve has the mathematically challenging constraint
that the tangent vector is of unit magnitude at all points along
the chain �17�. Relaxing this constraint such that the chain
length is globally constrained �18�, the tangent is constrained
at one end �19,20�, or the tangent length fluctuates about a
unit average �21–24� results in analytically tractable expres-
sions for the chain statistics that are accurate up to several
moments. Alternative models to the wormlike chain model
permit the evaluation of chain statistics. For example, a
Dirac chain exhibits a similar crossover in behavior from the
rigid to flexible limits as the wormlike chain model and cap-
tures several average quantities �25,26�.

An exact solution for the end-to-end distance distribution
function for the wormlike chain was not available until very
recently �27–31�. In particular, we have developed a compact
continued-fraction representation of the end-to-end distance
distribution function in Fourier-Laplace space as well as
single-chain partition functions in Laplace space for a worm-
like chain in dipole and quadrupole fields �30�. These ad-
vances allow a number of important chain properties, such as
its structure factor, to be studied, and reveal some unex-
pected behaviors. For example, the end-to-end distance dis-
tribution function exhibits two peaks for intermediate values
of the chain rigidity when the chain length is the same order
of magnitude as the persistence length �27,28�.

A more complete characterization of the semiflexible
chain conformation requires specifying both the end-to-end
distance vector and the orientations of the chain ends. For a
polymer chain with intermediate to large rigidity, the end-to-
end distance vector will be strongly coupled to the orienta-
tions of the chain ends. Although the end-to-end distance
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distribution provides information on the average spatial di-
mension of the chain, the shape of a polymer is better de-
scribed by the probability distribution of the end-to-end dis-
tance vector relative to the orientation of the starting end.
Furthermore, a number of important phenomena cannot be
addressed unless the end-point orientations are included in
the end-to-end distance vector distribution. For example, the
closure of a DNA plasmid �32–35� requires the chain ends to
be oriented with parallel tangents in order to form a smooth
closed circle. Theoretical treatments of the thermodynamics
of ring closure generally rely on quadratic-order fluctuations
of the conformation about a minimum-energy reference con-
formation �36,37�, an approximation that is valid for short
chain lengths �or large rigidity� but fails for intermediate to
long chain lengths �or small rigidity�. Also, gene regulation
in the cell is orchestrated by DNA-binding proteins; many of
which loop DNA with fixed end orientations that are dictated
by the structure of the proteins �38–41�. Fixing the chain
ends at specified spatial locations and orientations leads to
more complicated conformations than those prevalent in a
smoothly closed ring. In the case of DNA bound to lac re-
pressor, for example, energy minimization of elastic threads
predicts the dominant conformation of the bound DNA
�42,43�. However, the free energy of the bound DNA includ-
ing conformation fluctuations away from the dominant struc-
ture requires methods to address the statistical behavior of a
semiflexible polymer with both specified end-to-end distance
and fixed end orientations that is accurate over the entire
chain-rigidity spectrum.

In this paper, we present the exact analytical solution for
the end-to-end distance vector distribution function with
fixed end orientations �the Green function� for the wormlike
chain model. In Sec. II, we describe the methods and derive
results for the Green function in two and three dimensions in
Fourier-Laplace space. In Sec. III, we address the statistical
behavior of a polymer chain in two dimensions with fixed
end orientations. Specifically, we consider the root-mean-
square end displacement of a chain with both ends clamped
as well as the behavior of the end-to-end distance vector
distribution relative to the orientation of one end. These re-
sults are used to provide insight into the waning influence of
fixed end orientations on the chain statistics as the rigidity
decreases and the double-peaked structure of the end-to-end
distance distribution function found in previous studies
�27,28�. We conclude this paper with a summary of our re-
sults in Sec. IV.

II. FULL GREEN FUNCTION FOR THE WORMLIKE
CHAIN MODEL

The formal definition of the wormlike chain model re-
quires a definition of both the spatial geometry of the chain
and the resulting deformation energy. The chain geometry is
described by an inextensible space curve r��s� in d dimen-
sions that is parametrized by the arc length parameter s,
which runs from zero at one end of the chain to the contour
length L at the opposite end. The chain is assumed inexten-
sible, so that the tangent u��s�=�sr��s� is a unit vector at all
positions along the chain ��u��s��=1 for all s�. The bending

deformation energy is taken to be quadratic in the curvature
of the chain conformation, as in linear elasticity theory
�44,45�, and is given by �17�

�H0 =
lp

2
�

0

L

ds� �u�

�s
�2

, �1�

where lp is the persistence length and �=1/ �kBT�. Additional
terms can be added to the Hamiltonian to account for other
effects including multibody interactions, external fields, and
constraints on the chain dimensions.

We now turn to the statistical mechanics of this model by
subjecting the elastic chain to thermal fluctuations, which
cause the chain to explore a range of conformations. A key
characterization of the statistical behavior of the fluctuating

chain is given by the Green function G�R� ,u� �u�0 ;L� that gives
the probability that a chain of length L with one end fixed at
the origin with orientation u�0 will have the other end located

at position R� with orientation u� . The Green function is found
by performing a sum over all possible paths consistent with
these specifications, awarding each conformation a Boltz-
mann weight. Mathematically,

G�R� ,u� �u�0;L� = �
u�0

u�

D�u��s����R� − �
0

L

dsu��s��e−�H0�u��s��,

�2�

where D�u��s�� indicates path integration over the tangent-
orientation paths of the chain with initial and final orienta-
tions u�0 and u� , respectively �46�. The path integration over
the tangent vector field is strictly restricted to values of the
tangent vector with unit magnitude, thus enforcing the chain
inextensibility constraint. The delta function in Eq. �2�
counts only those conformations with tangent vectors adding

up to R� .
To evaluate Eq. �2�, we first perform a Fourier transform

from the position variable R� to the Fourier variable k�; the
Green function is now written as

G�k�,u� �u�0;L� = �
u�0

u�

D�u��s��exp�− �H0�u��s�� + ik� ·�
0

L

dsu��s��
=	exp�ik� · �

0

L

dsu��s��

u�0

u�

, �3�

where the angle brackets �¯�u�0

u� indicate an average with re-
spect to the Hamiltonian �H0 �given by Eq. �1�� with initial
and final tangent orientations u�0 and u� , respectively. The
form of the Green function given in Eq. �3� is equivalent to
finding the statistical behavior of a wormlike chain under the
influence of an imaginary dipole field with fixed initial and
final chain orientations.

Our previous work on the behavior of a wormlike chain in
an external field serves as the foundation for this current
study �30�. In Ref. �30�, we provide exact results for the
partition function, Laplace transformed from the dimension-
less length N=L / �2lp� to the Laplace variable p, of a worm-
like chain imbedded in a dipole and quadrupole field, in both
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two and three dimensions. We adapt the techniques devel-
oped in Ref. �30� to address the statistical behavior of a
semiflexible chain with fixed end orientations.

Before delving into the details of our solutions, we outline
the main procedures of our derivation. As previously men-
tioned, Eq. �3� reduces our problem to a wormlike chain in
an external imaginary dipole field. We note that the Hamil-
tonian �H0 is invariant to rotation and perform a rotation of
the tangent vector such that the Fourier vector k� is aligned
with the x axis in two dimensions and the z axis in three
dimensions, which greatly simplifies the calculation of the
average with respect to the Hamiltonian �H0. We perform a
Taylor expansion of the exponential, which results in the
infinite moment-based expansion of the Green function. The
moments are calculated using the Green function for the
Hamiltonian �H0, which is a function of the tangent vector
only. Noting the convolution structure of the moment-based
expansion, we take the Laplace transform from the chain
length variable N=L / �2lp� to the Laplace variable p, which
converts the product of integrals within each moment to a
simple algebraic product of terms. We then utilize a diagram-
matic representation of the algebra first developed by Ya-
makawa �47,48� and establish the diagrammatic rules that are
relevant to our current study. We show that the diagrams
from the moment-based expansion can be sorted in a mean-
ingful manner that results in a hierarchical structure for the
solution for the Green function in Fourier-Laplace space.

We now give the detailed derivation for the Green func-
tion of a wormlike chain in two and three dimensions, fol-
lowing the steps outlined above; these derivations run paral-
lel to the progression in Ref. �30�.

A. Two-dimensional solution

In two dimensions, the orientation of the tangent vector is
defined by the angle � between the tangent vector and the x
axis. We require the orientation-only Green function
G0�� ��0 ;L� that gives the conditional probability that a chain
of length L with initial tangent orientation �0 will have the
final orientation �. The Green function can be written as an
eigenfunction expansion

G0����0;L� = 

m=−�

�
1

2�
eim��−�0� exp�−

m2L

2lp
� . �4�

Equation �4� permits the evaluation of the averages with re-

spect to �H0 present in the full Green function G�R� ,u� �u�0 ;L�
�Eq. �3��.

The Fourier variable k� in two dimensions is written as
k� =k cos �x̂+k sin �ŷ, where k is the magnitude and � gives
the orientation relative to the x axis. We now perform a ro-
tation of the tangent orientation vector of the form u� =� ·u��
such that k� ·� ·u��=kx̂ ·u��, thus k� ·�=kx̂. This is accomplished
by a rotation of the coordinate axis by an angle �. Since the
Hamiltonian is invariant to such a transformation, the effect
of the rotation merely resets the initial and final orientation
of the tangent vector to �0−� and �−�, respectively. Equa-
tion �3� is now written as

G�k�,u� �u�0;L� =	exp�ikx̂ · �
0

L

dsu��s��

�0−�

�−�

= 

n=0

�
�ik�n

n! 	��0

L

ds cos ��s��n

�0−�

�−�

, �5�

the second form in Eq. �5� is the moment-based expansion.
To simplify the subsequent steps, we nondimensionalize the
chain length and the Fourier variable to N=L / �2lp� and
K=2lpk, respectively.

The average in the nth term of the moment-based expan-
sion is rewritten as

n !	�
i=1

n �
0

si+1

dsi cos ��si�

�0−�

�−�

, �6�

where sn+1=N, and the factor of n! arises from the “time”
ordering of the integrations within the average. The Markov-
ian nature of the statistics permits the evaluation of this av-
erage using the Green function G0�� ��0 ;N� given by Eq. �4�;
G0���si+1� ���si� ;si+1−si� is sandwiched between each suc-
cessive factor in the product of Eq. �6�, and the result is
integrated over the intermediate angular variables, fixing the
initial and final orientations. The nth term requires n+1
propagators and thus n+1 intermediate m indices.

Since the eigenfunctions in the propagator �Eq. �4�� are
complete and orthonormal, only certain m-index values will
survive the integration over the intermediate orientations in
Eq. �6�. Noting that cos �eim�=ei�m+1�� /2+ei�m−1�� /2, the m
index values that contribute a nonzero value to the average in
Eq. �6� are selected by the criteria that each intermediate m
index value is offset from its neighbor by either +1 or −1.
Since the initial and final orientations are fixed, the initial
m-index m1 and the final m-index mn+1 are free to take any
value. As an example to illustrate these steps, we consider
the average in the n=2 term in Eq. �6�. After performing the
integrals over the intermediate tangent orientations, we have

2 !	�
i=1

2 �
0

si+1

dsi cos ��si�

�0−�

�−�

=
1

2�2��2�
0

N

ds2�
0

s2

ds1 

m1,m2,m3

eim3��−��Cm3
�N − s2�

���m3,m2+1 + �m3,m2−1�Cm2
�s2 − s1�

���m2,m1+1 + �m2,m1−1�Cm1
�s1�e−im1��0−��, �7�

where the sums over the m-indices run from −� to �, and
Cm�N�=exp�−m2N�. The Kronecker delta functions �m,n in
Eq. �7� restrict the allowed m-index values such that each
m-index is offset from its neighbor by +1 or −1. The sum
over the intermediate m-index m2 results in initial and final
m-index values that satisfy either �m3−m1�=2 or m3−m1=0.

Similar manipulations as described in the previous para-
graph yield the nth term in the moment-based expansion �Eq.
�6��, which now reads
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n !	�
i=1

n �
0

si+1

dsi cos ��si�

�0−�

�−�

=
n!

2n�2��2�
i=1

n



�mi�

eimn+1��−���
0

si+1

dsiCmi+1
�si+1 − si�

���mi+1,mi+1 + �mi+1,mi−1�e−im1��0−��Cm1
�s1� , �8�

where sn+1=N=L / �2lp�, and the sum over �mi� indicates
summation over all mi �i=1,2 ,… ,n+1� from −� to �.
Evaluating Eq. �8� requires finding the m-index values that
survive the Kronecker delta functions upon summing over
the m-index values; this essentially involves finding the
m-index values that correspond to paths between m1 and
mn+1 with n steps of unit magnitude separating them. The
convolution structure of Eq. �8� suggests a simple solution
when we perform a Laplace transform from N to p. Equation
�8� is now written as

L�n !	�
i=1

n �
0

si+1

dsi cos ��si�

�0−�

�−� �
=

n!

2n�2��2�
i=1

n



�mi�

1

Pmi

1

Pmn+1

��mi+1,mi+1 + �mi+1,mi−1�

�eimn+1��−��e−im1��0−��, �9�

where L indicates a Laplace transform from N to p, and
Pm= p+m2. Solving Eq. �9� involves finding the m-index
paths that connect m1 to mn+1, which are subsequently
summed from −� to �.

With Eq. �9�, we write the Laplace transform of Eq. �5� as

G�k�,u� �u�0;p� =
1

�2��2 

n=0

� � iK

2
�n



m1,mn+1

eimn+1��−��e−im1��0−��

� 

paths 	

m1→mn+1

�
i=1

n+1
1

Pmi
�	�

, �10�

where K=2lpk. The sum over the paths 	 involves finding
the m-index paths that connect m1 to mn+1 with n intermedi-
ate steps of unit magnitude. In its current form, the Green
function is found by summing terms from the moment-based
expansion according to the power of the term; however, it is
easier to collect all the terms that begin and end at the same
m-index values, which we identify as m0 for the initial m
index and mf for the final m index. The Green function is
now written as

G�k�,u� �u�0;p� =
1

�2��2 

m0,mf

eimf��−��e−im0��0−��

� 

paths 	

m0→mf

�
�mi

�	��

iK/2

Pmi
�	�

, �11�

where the product over �mi
�	�� indicates a product of terms

for each path that connects m0 to mf. We now turn to finding
the sum of all m-index paths that connect m0 to mf.

Following Yamakawa �47,48�, we represent the m-index
paths diagrammatically using a stone-fence representation;
this is done by plotting the values of the m indices and con-
necting each successive value by a line segment. The benefit
of casting our current problem into the diagrammatic repre-
sentation is in reducing the complicated algebra to a simpler
representation and in identifying and collecting similar terms
in the summation. We define Gm0

mf �K ; p� as the sum over all
possible m-index paths that connect m0 to mf �equal to the
second line in Eq. �11��. The selection rule for the m indices
requires that each m index differs from its neighbor by either
+1 or −1, so a valid diagram that connects m0 to mf zigzags
from m0 to mf without violating this selection rule. The first
contribution for �m0−mf�=n is a straight line that requires n
steps, and subsequent contributions involve adding an equal
number of up and down steps so as to not upset the end
values. As an illustration, we consider the first 14 diagrams
that contribute to the term mf =m0+1 in Fig. 1�A�; these
diagrams represent all possible paths that connect m0 to mf
using either one, three, or five steps of unit magnitude in
between. These diagrams, along with the infinite number of
diagrams with greater than five steps, are summed together
to find Gm0

m0+1. The diagrams in Fig. 1�A� are easily converted
to their corresponding mathematical expressions by noting
that each m-index value contributes a factor of Pmi

−1 and
each step contributes iK /2 to the product. For example,
the first diagram in Fig. 1�A� represents the expression
Pm0

−1�iK /2�Pm0+1
−1 , and the second diagram represents

Pm0

−1�iK /2�Pm0+1
−1 �iK /2�Pm0

−1�iK /2�Pm0+1
−1 . With these diagram-

FIG. 1. The first 14 diagrams for the case mf =m0+1 are shown
in A. The infinite sum of diagrams for mf =m0+1 collapse into the
two equivalent diagrams shown in B. In B, the wavy line represents
the sum of diagrams that begin and end at that level, the wavy line
with the upward pointing arrow represents the sum of diagrams that
begin and end at that level without going beneath that level, and the
wavy line with the downward pointing arrow represents the sum of
diagrams that begin and end at that level without going above that
level �see text for details�.
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matic rules in place, any diagram is easily converted back to
its mathematical expression in Laplace space and vice versa.

We now recall several results found in Ref. �30� in order
to further simplify Eq. �11�. Our previous study on the sta-
tistical behavior of a wormlike chain without fixed end ori-
entations involves a similar m-index path summation as
found in Eq. �10�. We found that the infinite sum of terms
arising from m-index paths with equal initial and final
m-index values m0=mf =n is given by

Wn =
1

K2wn−1
�−�

4
+ Pn +

K2wn+1
�+�

4

, �12�

where Pn= p+n2, and wn
�−� and wn

�+� obey the recursive
relationships wn

�−�=1/ �Pn+K2wn−1
�−� /4� and wn

�+�

=1/ �Pn+K2wn+1
�+� /4�. This result adopts the form of an infi-

nite continued fraction, which emerges naturally by a collec-
tion of similar terms within the infinite summation that is
best visualized using the diagrammatic representation �30�.
The partial continued fractions wn

�−� and wn
�+� are collections

of particular m-index paths. The sum of all m-index paths
between n and n with no intermediate m-index values greater
than n is given by wn

�−�, and the sum of all m-index paths
between n and n with no intermediate m-index values less
than n is given by wn

�+�.
The results found in Ref. �30� provide the necessary ele-

ments to find the solution for Gm0

mf . For the case m0=mf, the
sum of diagrams Gm0

m0 is exactly equal to Wm0
. For the case

m0�mf, the sum of diagrams Gm0

mf requires special care to
avoid double counting the diagrams; however, the result is
easily constructed with our results from Ref. �30�. In Fig. 1,
we consider the case mf =m0+1. The summation from m0 to
mf is found by performing a sum of all diagrams from m0 to
m0, stepping up to m0+1, and then performing a sum of
diagrams from mf �=m0+1� to mf with the requirement that
no intermediate values are less than mf. This requirement
ensures that no diagrams are double counted in Gm0

m0+1. For
example, the third diagram in the second line of Fig. 1�A� is
decomposed into one part that goes from m0 to m0 �four
steps, up→down→down→up� and a step up to mf; this dia-
gram is counted only once in Gm0

m0+1 if we sum all diagrams
between m0 and m0, step up to mf, and sum all diagrams
between mf and mf without going below mf. We do not arrive
at Gm0

m0+1 if we sum all diagrams between m0 and m0, step up
to mf, and sum all diagrams between mf and mf since many
diagrams are multiply counted, including the third diagram
in the second line of Fig. 1�A�. By this technique, the left
four steps in this diagram are contributed by the sum of all
diagrams between m0 and m0, and stepping up to mf com-
pletes this diagram. However, the third diagram in the second
line of Fig. 1�A� is also constructed by first stepping up to mf
from m0, and the right four steps in this diagram are contrib-
uted by the sum of all diagrams between mf and mf. This
demonstrates the need to restrict the sum of diagrams be-
tween mf and mf to those diagrams that do not extend below
mf to avoid this double counting of diagrams. Alternatively,
the summation from m0 to mf can be found by summing

from m0 to m0 without going above m0, then stepping up to
mf �=m0+1�, and then summing all diagrams that begin and
end at mf. In Fig. 1�B�, we show modified diagrams that
demonstrate how we collect these terms to find Gm0

m0+1. The
wavy line in Fig. 1�B� represents the sum of all diagrams that
begin and end at that level �Wn�, the wavy line with the
upward pointing arrow represents the sum of diagrams that
begin and end at that level without ever going beneath that
level �wn

�+��, and the wavy line with the downward pointing
arrow represents the sum of diagrams that begin and end at
that level without ever going above that level �wn

�−��. There-
fore, we find Gm0

m0+1=Wm0
�iK /2�wm0+1

�+� =wm0

�−��iK /2�Wm0+1; the
equivalence of these two expressions can be shown using the
results from Ref. �30� provided in the preceding paragraph.

This procedure can be extended to arbitrary m0 and mf
using similar arguments as the preceding paragraph. As pre-
viously mentioned, the case where m0=mf gives

Gm0

m0 = Wm0
. �13�

For the case m0
mf, the sum of diagrams from m0 to mf is
given by

Gm0

mf = Wm0
� iK

2
��mf−m0�

�
n=1

�mf−m0�

wm0+n
�+� , �14�

and for the case m0�mf, we have

Gm0

mf = Wm0
� iK

2
��mf−m0�

�
n=1

�mf−m0�

wm0−n
�−� . �15�

Equation �11� is now written as

G�k�,u� �u�0;p� =
1

�2��2 

m0,mf

eimf��−��e−im0��0−��Gm0

mf . �16�

This completes our formal solution of the full Green function
of a wormlike chain in two dimensions.

B. Three-dimensional solution

The solution for the Green function for the wormlike
chain model in three dimensions is found using a virtually
identical progression of steps as in the two-dimensional deri-
vation. However, there are several nontrivial differences that
we will draw attention to along the way. Perhaps the most
substantial difference in the three-dimensional derivation lies
in the added complexity of having more degrees of freedom
associated with both the end orientations and the end posi-
tion; nonetheless, the added complexity does not render the
problem intractable.

In three dimensions, the orientation of the tangent vector
is defined in spherical coordinates by the polar angle � and
the azimuthal angle �, which are defined according to the
usual convention �49�. To perform averages with respect to
�H0 �Eq. �1��, we require the orientation-only Green func-
tion G0�u� �u�0 ;L� that gives the joint probability that a chain
of length L will have initial tangent orientation u�0 and final
tangent orientation u� regardless of the end position in space.
The Green function is given by
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G0�u� �u�0;L� = 

l=0

�



m=−l

l

Yl
m�u��Yl

m*�u�0�Cl�N� , �17�

where Cl�N�=exp�−l�l+1�N�, N=L / �2lp�, and Yl
m are the

spherical harmonics �49�.
The Fourier variable in three dimensions is written in

spherical coordinates as k� =k sin � cos 
x̂+k sin � sin 
ŷ
+k cos �ẑ, where k is the magnitude of k�, and the orientation
of k� is defined by the polar angle � and the azimuthal angle

. To aid in the calculation of the average in Eq. �3�, we
perform a rotation of the coordinate system such that k� is
aligned along the z axis. This is done by setting the tangent
vector to u� =� ·u�� such that k� ·u� =k� ·� ·u�� is equal to kẑ ·u��,
thus we have k� ·�=kẑ. Since the Hamiltonian �H0 is invari-
ant under arbitrary coordinate rotation, this operation merely
resets the fixed initial and final tangent orientations from
u�0 ,u� to u�0� ,u�� as determined by the inverse of the rotation
matrix �, i.e., u��=�−1 ·u� and u�0�=�−1 ·u�0. The rotation that
draws the Fourier variable k� into coincidence with the z axis
involves the two-step process of rotation of u� about the y
axis by the angle � and then rotation of u� about the z axis by
the angle 
. The inversion of our rotation is expressible in
terms of the Euler angles � ,� ,� �49,50� according to
�=−
, �=−�, and �=0, which gives the rotated initial and
final tangent orientations u�0� and u��. Upon performing such a
rotation, the Green function in three dimensions is given by

G�k�,u� �u�0;L� =	exp�ikẑ · �
0

L

dsu��s��

u�0�

u��

= 

n=0

�
�ik�n

n! 	��0

L

ds cos ��s��n

u�0�

u��
. �18�

As in two dimensions, we simplify the derivation by nondi-
mensionalizing the chain length and Fourier variable to
N=L / �2lp� and K=2lpk, respectively.

The average in Eq. �18� is performed by a virtually iden-
tical procedure as in two dimensions. The three-dimensional
version of Eq. �6� is identical except that the constraints on
the average are altered to the initial and final orientations u�0�
and u��. The average is found using the Markovian nature of
the statistics by inserting the Green function given by Eq.
�17� between each successive term and integrating over the
intermediate tangent orientations. In two dimensions, we
found that certain values of the m indices of the Green func-
tions contributed to the average. However, in three
dimensions, the Green functions have both l indices and m
indices that must be accounted for when determining the
contributing terms. We note that the spherical harmonics
obey the relationship cos �Yl

m=al+1
m Yl+1

m +al
mYl−1

m where al
m

=��l−m��l+m� / �4l2−1� �49�. Therefore, the l indices that
contribute to the averages in question must be offset from
their neighbors by either +1 or −1 �same as m indices in two
dimensions�, and the m indices are constant for any contrib-
uting m-index path. The task of finding l ,m-index paths that

contribute to the average is no more complicated than the
two-dimensional case since the initial, intermediate, and final
m indices are all equal.

The diagrammatic representation of the Laplace-space
calculation of the average in three dimensions is virtually
identical to the two dimensional case described in the previ-
ous section and shown in Fig. 1 with only minor modifica-
tions. First, we switch all labels of m in the two-dimensional
case to l indices. Second, due to the properties of spherical
harmonics, the l indices cannot be less than the magnitude of
the m index ��m��, which is a constant for a given diagram.
This restriction has some consequences on the diagrammatic
summation. For l0� �m�+2, the three-dimensional analogue
of Fig. 1�A� is identical to Fig. 1�A�. For l0= �m�+1, the
second diagram in the third line of Fig. 1�A� does not exist
since the third l index is less than �m�. Similarly, for l0= �m�,
the third diagram in the first line, the second, third, and
fourth diagrams of the second line, and the second and fourth
diagrams of the third line of Fig. 1�A� do not contribute since
at least one intermediate l index is less than �m�.

The diagrammatic representation is easily converted into
the Laplace-space expressions that they represent; a diagram
corresponding to the particular l-index path �l1 , l2 ,… , ln+1�
�n steps separate the initial and final l indices� with m-index
value m is equal to Pl1

−1�i=2
n+1iKali+ti

m Pli
−1 where Pl= p+ l�l+1�,

and ti=0 if li= li−1+1 �step up� and ti=1 if li= li−1−1 �step
down�. For example, the three-dimensional expression for
the first diagram of the third line of Fig. 1�A� is given by

1

Pl0

iKal0+1
m

Pl0+1

iKal0+2
m

Pl0+2

iKal0+2
m

Pl0+1

iKal0+1
m

Pl0

iKal0+1
m

Pl0+1
, �19�

where we express all l indices in terms of l0 and lf = l0+1.
Following similar steps as in the two-dimensional solu-

tion, the Fourier-Laplace transformed Green function is writ-
ten as

G�k�,u� �u�0;p� =
1

4�



l0,lf,m
Ylf

m�u���Yl0
m*�u�0��Gl0

lf,m, �20�

where we define the sum of all diagrams that connect l0 to lf

with a fixed value of m as Gl0
lf,m�K ; p�. The indices l0 and lf in

the sum run from zero to infinity; however, the index m runs
from −min�l0 , lf� to min�l0 , lf� where min�l0 , lf� is the mini-
mum value of l0 and lf.

We now recall and adapt several results from Ref. �30� to
complete our derivation. The infinite sum of diagrams with
equal initial and final l-index values of l- and m-index values
m for all diagrams is given by

Wl
m =

1

�al
mK�2wl−1

m�−� + Pl + �al+1
m K�2wl+1

m�+� , �21�

where Pl= p+ l�l+1�, al
m=��l−m��l+m� / �4l2−1�, and K

=2lpk. The terms wl
m�+� and wl

m�−� represent the sums of all
diagrams that start and end at l with no intermediate l indices
below l�wl

m�+�� or above l�wl
m�−�� with m-index value m for

all diagrams. These terms are continued fractions that
are governed by the recursive relationships wl

m�+�
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=1/ �Pl+ �al+1
m K�2wl+1

m�+�� �l�m�, wl
m�−�=1/ �Pl+ �al

mK�2wl−1
m�−��

�l�m+1�, and wl
m�−�=1/ Pl �l=m�. Using similar arguments

as the two-dimensional case, the sum of diagrams with initial
l-index value l0 and final l-index value lf is constructed using
the partial sums Wl

m, wl
m�+�, and wl

m�−�. For the case l0= lf, the
sum of diagrams is

Gl0

l0,m = Wl0
m . �22�

For the case l0
 lf, the sum of diagrams is given by

Gl0

lf,m = Wl0
m �

n=1

�lf−l0�

iKal0+n
m wl0+n

m�+�, �23�

and for the case l0� lf, the sum of diagrams is given by

Gl0

lf,m = Wl0
m �

n=1

�lf−l0�

iKal0+1−n
m wl0−n

m�−�. �24�

These expressions and Eq. �20� complete our solution for the
full Green function in Fourier-Laplace space for a wormlike
chain in three dimensions.

III. CHAIN STATISTICS WITH FIXED END
ORIENTATIONS

In the preceding section, we derive the full Green function
for the wormlike chain model in two and three dimensions in
Fourier-Laplace space, which describes the statistical behav-
ior of a semiflexible polymer chain with fixed orientations of
the end tangents. In this section, we demonstrate the utility
of our results by examining the statistical behavior of a chain
with fixed end orientations �either both ends clamped or one
end clamped�.

Many studies of the statistical behavior of semiflexible
polymers focus on the end-to-end distance distribution func-
tion �10,11,13–16,18,19,22–28�, which gives the probability
that the ends of a semiflexible chain are separated by a fixed
distance regardless of the end tangent orientations. These
studies demonstrate the role that semiflexibility plays in the
spatial separation of the chain ends. For rigid chains, the
ends are extended to nearly the contour length of the chain,
indicative of the chain conformation being essentially
straight with small wiggles in the transverse direction. For
flexible chains, the end-to-end distance distribution function
tends to a Gaussian distribution, as a result of the polymer
trajectory tracing a random walk through space once the tan-
gent orientations become uncorrelated by thermal fluctua-
tions. As we progress from high rigidity to low rigidity, the
end-to-end distance distribution function shifts from being
peaked at an end separation of the contour length L to the
peak being located at zero end separation. The crossover
between these two limiting behaviors exhibits a double-
peaked distribution function for intermediate chain rigidities
in both two and three dimensions �27,28�, suggesting that
such a chain could exist in an open and a closed state. The
implications of this double-peak feature on the dynamic be-
havior of semiflexible polymers are yet to be explored.

The end-to-end distance distribution function provides a
clear picture of the fluctuating separation between the chain

ends, but it only gives indirect information about the fluctu-
ating conformation. For semiflexible polymers, the chain
conformation is strongly coupled to the end orientations, thus
the influence of thermal fluctuations on the chain conforma-
tion is best examined by observing the statistics of the end-
to-end vector while the ends have fixed orientations.

We begin by considering the orientation-dependent end
displacement for a semiflexible polymer with fixed end ori-
entations. The full Green function in two dimensions �Eq.
�16�� permits the evaluation of average quantities with fixed
end orientations. For example, the nth moment of the full
Green function gives the following average quantity:

Mn = ��R� · ê����n��0

� =
�− i�n

q�N�
L−1�� �nG�k�,���0;p�

�Kn �
K=0

� ,

�25�

where L−1 indicates an inverse Laplace transform from p to
N. Equation �25� gives the average end displacement in the
ê��� direction raised to the nth power for a chain with fixed
initial orientation �0 and final orientation �, where length is
nondimensionalized by 2lp. The partition function q in Eq.
�25� normalizes the average and is given by

q�N� =
1

�2��2 

m=−�

�

exp�im�� − �0��exp�− m2N� . �26�

Application of Eq. �25� for n=2 gives the mean-square
displacement along ê��� of a chain with initial orientation �0

and final orientation �. In Fig. 2, we show the scaled root-
mean-square displacement �M2 /N2 along the direction e����
of a chain in two dimensions with the initial tangent pointing
up along the x axis and the other end with orientation � for
several values of N=L / �2lp�. The upper left-hand figure
shows the minimum-energy conformations of a chain with
fixed end orientation �=0 �straight chain marked A�,
�=� /2 �curved chain marked B�, and �=� �curved chain
marked C�. For a given value of N, we show the root-mean-
square displacement as the radial distance in a polar plot over
the angle � for �=0 �solid curve�, � /2 �dashed curve�, and �
�dashed-dotted curve�.

In the limit of N→0, the chain conformation tends to the
minimum-energy conformations presented in the upper-left
part of Fig. 2; therefore, the root-mean-square displacement
behaves as

�M2/N2 → � sin�� − �� − sin��0 − ��
� − �0

� . �27�

For N=0.1 in Fig. 2, the root-mean-square displacement only
deviates slightly from Eq. �27�. As N increases, thermal un-
dulations in the chain cause the root-mean-square displace-
ment to lose its anisotropy, eventually leading to a rotation-
ally symmetric root-mean-square displacement given by the
random walk behavior �M2 /N2=1/�N.

The crossover from rigid to flexible chain in Fig. 2 dem-
onstrates that a signature of semiflexibility is the strong cou-
pling between chain conformation and end orientation. No-
tably, the root-mean-square end displacement for N=10 still
deviates appreciably from the rotationally invariant behavior
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prevalent for perfectly flexible chains despite the fact that
length of the polymer is 20 times the persistence length. To
quantify the waning coupling between chain conformation
and end orientation, we define the following metric:

�� =
1

�2/4 − 1
�M2�� = �/2,� = �,�0 = 0�

M2�� = 0,� = 0,�0 = 0�
− 1� . �28�

The metric �� gives the relative discrepancy between the
maximum displacement for chain ends that are oriented par-
allel and antiparallel to each other and tends to one as
N→0 and zero as N→�. In Fig. 3, we plot �� over several
decades of N. We see in Fig. 3 that the shoulder in �� occurs
at N�3. For N�3, �� tends to zero as N−1, in agreement
with the first-order correction to Gaussian chain statistics
that couples end position to end orientations �10,11�. Figure
3 suggests the end orientations substantially influence the
end displacement for semiflexible polymers, even for rela-
tively large values of N=L / �2lp�. For example, the mean-
square end displacement for a chain that is 20 persistence
lengths long �N=10� exhibits a 24% difference between the
case of ends oriented parallel and the case of ends oriented
antiparallel.

We now consider the end distribution function of a worm-
like chain in two dimensions with one end fixed at the origin,
pointed along the x axis, and the other end free. We note that
this problem was previously addressed using Monte Carlo
simulation �51� and analytical theory in the stiff-chain limit
�52�; our results are consistent with these results, but reveal
several features that were not addressed in these studies. In
addressing this problem, we demonstrate the role that corre-
lation between the orientation of the tangent vector of the

fixed chain end and the vector distance of the free end plays
in the chain statistics and provide further insight into the
cause of the anomalous statistical behavior at intermediate
chain rigidity �27,28�. Since this anomalous behavior exists

FIG. 2. The root-mean-square displacement
�M2 /N2 �length nondimensionalized by the con-
tour length L� projected along the direction e����
of a chain in two dimensions with the initial tan-
gent pointing up along the x axis and the other
end with orientation �. The upper left-hand figure
shows minimum energy conformations for �=0
�A�, �=� /2 �B�, and �=� �C�. We plot the root-
mean-square displacement as the radial distance
�radial distance ranges from zero to one� against
the polar angle � for �=0 �solid curve�, �=� /2
�dashed curve�, and �=� �dashed-dotted curve�
for the dimensionless chain length N=L / �2lp�
equal to 0.1, 1, and 10.

FIG. 3. The metric �� �defined by Eq. �28�� versus the chain
length N=L / �2lp�, showing the waning discrepancy between the
maximum end displacement for chain ends that are oriented parallel
and antiparallel to each other.
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in both two and three dimensions, we restrict our analysis to
the two-dimensional case for simplicity.

The statistical behavior of a semiflexible polymer with
one end clamped at the origin and its tangent oriented in the
direction x̂ is governed by the Green function averaged over
the orientation of the other end. Using results from the pre-
ceding section, the Green function for our current problem is

G�k��u�0;p� =
1

2�
G0

0�K;p� +
1

�


m=1

�

cos �G0
m�K;p� , �29�

where u�0= x̂ , � gives the orientation of k� , K=2lpk, and the
functions G0

m are the infinite continued fractions derived in
the preceding section.

The Green function in real space is found by Fourier and
Laplace inversions of Eq. �29�, which requires approximate
evaluation of the infinite continued fractions. In our calcula-
tions, we truncate the infinite continued fractions at the tenth
level, thus the summation over m in Eq. �29� stops at
m=10. The Laplace inversion is performed on the resulting
function by numerically finding the residues of the truncated
continued fraction, which are all simple poles. The Fourier
inversion involves an integral over the angle � and an inte-
gral over the k�-vector magnitude K. The former is performed
analytically, and the latter is performed numerically from
K=0 to K=Kmax, where Kmax is a large-K cutoff value that is
sufficiently large to achieve convergence.

We use several metrics to determine the numerical accu-

racy; for example, the moments �R2n� and ��R� ·u�0�n� are nu-
merically calculated using our results and compared to ana-
lytical solutions. The utility of our solutions as moment
generating functions is demonstrated for the moment �R2n� in

Ref. �30� and for the moment ��R� ·u�0�n� using the following
expression:

��R� · u�0�n� = �− i�n2�� �nG�k��u�0;p�
�Kn �

K=0,�=0
, �30�

where R� is nondimensionalized by 2lp. We compare our re-
sults for n=1, 2, 3, 4 with the analytical expressions and find
good agreement for both �R2n� �within 1.5% difference for

0.5
N
10.0� and ��R� ·u�0�n� �within 0.08% difference for
0.5
N
10.0�. In Fig. 4, we show our results for the

moments ��R� ·u�0�n� for n=1, 2, 3, 4 compared with the
analytical values found using Eq. �30�, over the range
0.5
N
10.0. In principle, the order of the calculation de-
termines the number of moments that are accurately calcu-
lated, i.e., the order is equal to the highest moment that is
exactly captured in the statistics. All higher moments are
approximate, though with better accuracy for larger chain
length. Therefore, our results capture the first 10 moments
exactly and all higher moments approximately, with the ex-
tremely slight inaccuracy displayed in Fig. 4 attributed to the
numerical Fourier inversion.

In Fig. 5, we present our results for the end distance vec-
tor distribution function for a semiflexible polymer with one
end fixed at the origin with tangent orientation x̂ �pointing
up� and the other end located at position �x ,y� in space over

a range of chain rigidities �N=1.0 to N=6.5�. The end dis-
tance vector distribution functions in Fig. 5 have finite values
for R
1 �nondimensionalized by the chain length L� and are
zero for R�1; therefore, these density plots, which show
high probability in white �red online� and low probability in
black �blue online�, only display values for R�1. As N→0,
the location of the chain end is fixed at a distance R=1 away
from the origin along the direction of the initial orientation
u�0= x̂, indicating a perfectly straight chain. As the rigidity
decreases �or as N increases�, the end distance vector distri-
bution function fans out around the edge of the circle of
influence �R�1� due to transverse fluctuations of the chain.
Simultaneously, the peak position along the x-axis retracts
towards the origin since the transverse fluctuations cause the
ends to pull towards each other due to the fixed contour
length of the chain. From N=1.0 to N=2.5, the end distance
vector distribution function fans out until it essentially wraps
around towards the origin. The origin is the entropically fa-
vored position for the free end since there are many more
paths that the chain can take.

Near N=2.6, a second peak in the distribution emerges
when the tips of the fan touch each other near the origin. We
identify this peak as the entropic peak and the other peak,
located further from the origin along the direction of the
initial tangent, as the energetic peak. For 2.6
N
5.6, both
the entropic peak and the energetic peak are present in the
end distance vector distribution function; as the rigidity de-
creases, the dominant peak shifts from the energetic peak to
the entropic peak. As the entropic peak grows, the fanning of
the distribution function begins to meld into a circularly
symmetric feature. This is indicative of the bending energy

FIG. 4. The first four moments of the end distance vector dis-
tribution function for a semiflexible polymer with one end fixed at
the origin pointed in the x direction �u�0= x̂�. The figure includes
both analytical results �lines� and values calculated using the nu-
merical Fourier-Laplace inversion of Eq. �29� �data points� for

��R� ·u�0�n� with n=1 ���, n=2 ���, n=3 ���, and n=4 ���.
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having less influence over the chain conformation and the
entropy dominating the end distance vector distribution func-
tion. The energetic peak shrinks with N as the entropic peak
emerges and grows, until the energetic peak is quelled by the
growing entropic peak at N=5.6.

For N�5.6, the end distance vector distribution function
has a single peak associated with the entropic peak described
in the preceding paragraph. The location of the peak is
slightly away from the origin in the direction of the initial
tangent vector; as N→�, the peak location slowly creeps
toward the origin. This is due to the waning influence of the
chain rigidity over the conformation statistics. We note, how-
ever, that the peak remains eccentric for relatively flexible

chains; for example, the peak location for N=10.0 is at
x /L=0.1111.

In Fig. 6, we show the location and the value of the prob-
ability for the maxima in the end distance vector distribution
versus the dimensionless chain length N=L / �2lp�. Figure
6�A� shows the location of the entropic peak �solid curve�
and the energetic peak �dashed curve� along the x axis, and
Fig. 6�B� gives the value of the end distance vector distribu-
tion function at each peak. As N→0, the energetic peak pro-
ceeds to x /L=1 in a linear fashion as the chain straightens
out. This coincides with the end distance vector distribution
function becoming a delta function at x /L=1 and y /L=0,
and the peak height in the distribution function increases

FIG. 5. �Color online� The probability that a chain in two dimensions with one end fixed at the origin with tangent orientation x̂ �pointing
up� will have the other end located at position �x ,y� in space �unrestricted end orientation� for various values of the dimensionless length
N=L / �2lp�. These density plots show high probability in white �red� and low probability in black �blue�. We provide an animated version of
this figure at http://nature.berkeley.edu/~ajspakow
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exponentially as N→0. For 2.6
N
5.6, both the energetic
peak and the entropic peak are present in the end distance
vector distribution function. At N=2.6, the energetic peak
dominates the distribution function, and as N increases, the
dominant peak shifts to the entropic peak �equal probability
occurs at N=5.095�. As the rigidity decreases, the energetic
peak moves monotonically toward the origin with N; how-
ever, the entropic peak first shifts away from the origin from
N=2.6 to N=4.3 and then back toward the origin for
N�4.3. For N�5.6, the energetic peak disappears, and the
end distance vector distribution function has only the en-
tropic peak. The location of the peak slowly tends to the

origin as the contribution of the bending rigidity is over-
whelmed by the conformational entropy that prefers the dis-
tribution to be a Gaussian function that is centered at the
origin. Since the initial orientation is specified, the chain end
position tends to be off-centered by a Kuhn segment length
2lp in the direction of the initial orientation for chains that
are much longer than the persistence length lp. Therefore, we
expect the location of the peak xmax/L to tend to zero as 1/N;
we include this long-chain behavior in Fig. 6�A� �dotted
curve�.

We observe a double-peaked end distance vector distribu-
tion function between N=2.6 and N=5.6, similar to the be-
havior observed in the end-to-end distance distribution func-
tion with both ends free to rotate �27,28�. However, the end-
to-end distance distribution does not unambiguously clarify
whether the effect is real because the double-peak feature in
the end-to-end distance distribution could potentially arise
from the rotational average. Our results verify that the
double-peaked end-to-end distance distribution functions in
Refs. �27,28� indeed reflect the underlying conformation of
the polymer and were not artificial effects from the rotational
averaging.

The double-peaked end-to-end distribution affects the
equilibrium behavior of semiflexible polymers with poten-
tially important consequences on the biological function of
DNA. The process of looping DNA plays an important role
in gene regulation in the cell, as many regulatory proteins
function by looping short segments of DNA with fixed end
positions and orientations �38–41�. At intermediate chain
lengths, the double-peaked end-to-end distribution implies a
nonmonotonic force history as the chain ends are drawn into
coincidence �27,28,53,54�. The behavior of DNA at short
chain lengths may require more elaborate models than the
wormlike chain model �54–57�; however, such models tend
to enhance the looping probability and the nonmonotonicity
of the force history during loop formation �54�. Since the
probability modulates only slightly between the two domi-
nant peaks, the force remains relatively small as the chain
proceeds from open to closed. As such, the chain ends are
expected to experience large fluctuations for chain lengths
that exhibit the double-peaked distribution.

The pathway that the chain end traverses during the loop-
ing process is governed by the free energy as determined by
the end-to-end distribution function. Although the end-to-end
distance distribution function gives the thermodynamics of
end separation, the pathway of the chain end during looping
cannot be deduced unless the initial orientation is specified,
as in Fig. 5. The formation of a loop for a rigid chain occurs
by the chain looping around while maintaining a smoothly
bent conformation; this sweeping trajectory is clearly exhib-
ited in the fanlike probability function in N=1.0 in Fig. 5.
For chains of moderate rigidity where the double-peaked dis-
tribution occurs, the trajectory of the chain end follows more
closely along the direction of the initial orientation, indicat-
ing that the looping is more of an end retraction rather than a
sweeping loop �for example, see N=5.0 in Fig. 5�. The pro-
cess of looping a flexible polymer occurs by a diffusive pro-
cess of the chain end exploring its surroundings, as indicated
by the limiting behavior of the end-to-end distribution tend-
ing to a Gaussian as N→�.

FIG. 6. Location �found on the x axis� and peak value of the
maxima in the end distance vector distribution function for a chain
in two dimensions with one end fixed at the origin with tangent
orientation x̂ versus the dimensionless length N=L / �2lp�. For
2.6
N
5.6, there are two peaks in the probability distribution,
which we refer to as the energetic peak �dashed curve� and the
entropic peak �solid curve�. �A� shows the position of the peaks
along the x axis along with the long-chain behavior of the peak
location 1/N �dotted curve�. �B� gives the value of the probability
evaluated at the peaks.
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The force-extension behavior of the wormlike chain
model is monotonic for sufficiently long chain lengths �9�.
However, short chain lengths exhibit a variety of possible
behaviors depending on the specific conditions imposed at
the ends; for example, the force-extension behavior of a
chain under constant tension is different than that of a chain
under fixed end separation �53�. In this paper, we demon-
strate the effect of fixing the end orientations on the chain
end statistics. Understanding the behavior of semiflexible
polymers at small length scales requires special consider-
ation for the particular conditions at the chain ends, as dem-
onstrated in Ref. �53� and in our present work.

IV. SUMMARY

In this paper, we find the exact solution for the end-to-end
distance vector distribution function for a wormlike chain in
two and three dimensions that incorporate both the end po-
sition and the tangent orientation at the end-points. This
study extends our previous work on a wormlike chain in an
aligning field �30�, which made use of diagrammatic tech-
niques �47,48� to find exact expressions for the partition
function of a wormlike chain in an aligning field. Our present
results, as well as those found in Ref. �30�, adopt the form of
infinite continued fractions, which naturally emerge upon
noting the hierarchical structure of the moment-based expan-
sions employed in the derivation. The diagrammatic repre-
sentation results in a formalism that simplifies mathematical
manipulations and provides a visually convenient means of
identifying similar terms in the expansion. These methods
can be useful for addressing a wide range of physical prob-
lems involving semiflexible polymers.

The chain statistics derived in this paper permit the evalu-
ation of spatial averages for a chain with one or both ends
fixed. We present the root-mean-square displacement in a
given direction for a chain with both end orientations fixed.
For rigid chains �N=L / �2lp�
1�, the root-mean-square dis-
placement tends to that of the energy-minimum shapes,
which are anisotropic and show a strong coupling between
end orientation and chain conformation. As N→�, the influ-
ence of the end orientations over the chain conformation di-
minishes, marked by the crossover to a root-mean-square
displacement that is rotationally invariant. However, this
crossover occurs at intermediate values of N, and the cou-
pling between end orientations and conformation remains
strong for relatively flexible chains.

We further demonstrate our results by considering the end
distribution function of a wormlike chain in two dimensions
with one end clamped at the origin and pointed in a fixed
direction. Due to the rapid convergence of the continued
fractions, we are able to achieve good numerical accuracy by
truncation after just a few layers, as demonstrated by good

agreement with the analytical solutions for ��R� ·u�0�n� over a
wide range of chain rigidities �0.5
N
10.0�. The simplic-
ity and conciseness of our solutions should thus facilitate
their use in studying various aspects of the statistical me-
chanics of semiflexible polymers.

The end distance vector distribution function of a worm-
like chain with one clamped end in two dimensions exhibits
a double-peaked structure for intermediate chain rigidities
�2.6
N
5.6�. These results are consistent with previous
results for the end-to-end distance distribution function with
two free ends �27,28� and one free end �51,52�. The progres-
sion of the end distance vector distribution function from a
rigid chain to a flexible chain exhibits an interesting cross-
over behavior where the distribution fans out from the
straight chain peak until the ends of the fan touch, a second
peak emerges at the point where the fan tips meet, and the
second peak grows until it drowns out the original peak. As
the chain rigidity decreases further, the end distance vector
distribution function becomes circularly symmetric and the
remaining peak slowly creeps toward the origin. We find that
the end distance vector distribution function remains eccen-
tric even for relatively flexible chains; for example, the peak
in the distribution function remains a distance of 10% the
contour length away from the origin for N=10, suggesting
the distribution function is still substantially non-Gaussian
for N=10, which agrees with our results for the root-mean-
square end displacement with both ends fixed. These results
suggest that semiflexibility plays an important role over a
wide range of chain rigidities.
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